Journal of Organometallic Chemistry, 421 (1991) C7–C11 Elsevier Sequoia S.A., Lausanne JOM 22342PC

Preliminary communication

Carbon-13 spin-lattice relaxation in organometallic complexes

H. Schumann¹

Department of Chemistry, University of Utah, Salt Lake City, UT 84112 (USA) (Received August 22nd, 1991)

Abstract

The results of inversion recovery spin-lattice relaxation time (T_1) measurements on 19 selected organometallic half-sandwich and sandwich complexes of Cr, Mn, Fe and Co are reported together with their ¹³C NMR data. Large variations of the ¹³C NMR T_1 values for C_5H_5 and CO moieties are observed, depending on field strength, temperature and solvent. The use of high field instruments usually leads to lower ¹³C NMR T_1 values for these groups, but in certain cases the values for quaternary carbon atoms increase.

Introduction

Solution ¹³C NMR spin-lattice relaxation (T_1) data for organometallic compounds have rarely been obtained in the past [1] owing to the assumed long relaxation times of functional groups such as cyclopentadienyl (C₅R₅, R = H or CH₃) or CO bonded to metals and the consequently long instrument time needed to obtain the T_1 information. Recently however, T_1 measurements on inorganic [2] and organometallic complexes [3] have proved to be an important tool for obtaining structural information and details of metal-ligand interactions. As part of our program of investigations of the bonding properties of Main Group ligands coordinated to organometallic fragments, we report now the results of ¹³C NMR T_1 measurements on selected compounds.

During the preparation of this manuscript, two detailed reports on ¹³C NMR T_1 measurements on iron sandwich compounds, including and confirming some of the results reported here, appeared, together with a detailed account of the theoretical interpretation [4]. Thus, only a limited discussion without a theoretical treatment, is given below. Conclusions about the relaxation mechanism are omitted because the information obtained only further confirms the conclusions presented in reference 4.

¹ Present address: Fakultät für Chemie der Universität Bielefeld, Postfach 8640, W-4800 Bielefeld (FRG).

		•		
No.	E	$\delta(\text{ECH}_3)(T_1)$	$\delta(C_5H_5)(T_1)$	$\delta(CO)(T_1)$
		(ppm) ((s))	(ppm) ((s))	(ppm) ((s))
C ₅ H ₅ Fe	$(CO)_2(E(CH_3))$	$(E = group 15 elements)_3)]BF_4$ (E = group 15 elements)	ments)	
1	N	62.03 (1.1)	88.15 (2.4)	211.69 (3.1)
2	Р	19.77 (2.6)	88.21 (5.2)	210.21 (7.2)
3	As	14.86 (4.7)	87.20 (7.6)	210.22 (11.6)
4	Sb	0.57 (6.6)	86.67 (7.4)	212.21 (12.3)
[C₅H₅Fe	$(CO)_2(E(CH_3))$	$)_2)]BF_4$ (E = group 16 elements)	ments)	
5	S	27.64 (2.5)	88.28 (5.4)	210.02 (8.3)
6	Se	16.66 (4.4)	87.42 (7.2)	210.25 (11.5)
7	Te	-6.88 (5.5)	86.97 (5.8)	211.40 (16.3)

¹³C NMR chemical shifts and T_1 values at 75.5 MHz and 298 K for complexes 1–7 in (CD₃)₂CO

A report on the MAS ¹³C NMR study (MAS = magic angle spinning) of $[C_5H_5Fe(CO)_2(E(CH_3)_2)]BF_4$ (E = S, Se and Te) complexes, including solid state ¹³C NMR T_1 data, has been submitted for publication [5].

Results and discussion

The ¹³C NMR chemical shifts and their spin-lattice relaxation times (T_1) for 19 organometallic complexes are summarized in Tables 1-4.

Measurements on the cationic $[C_5H_5Fe(CO)_2]BF_4$ fragment (Table 1) indicate that T_1 values increase for the metal-bonded CO groups when the donor element E in ER_n is varied in the sequence E = N to Sb, n = 3; E = S to Te, n = 2. To a smaller extent, a similar effect is found for the C_5H_5 group. The observed T_1 values decrease in the order N < P < As < Sb for E = Group 15 donor elements and S < Se \ll Te for E = Group 16 donor elements. This trend seems to indicate

Table 2	
Solvent and/or temperature dependency of ¹³ C NMR T_1	values for complexes 2 and 5

No.	E	Solvent ^{<i>a</i>}	Т (К)	RF ^b (MHz)	$\frac{\text{ECH}_3 T_1}{(\text{s})}$	$C_{5}H_{5}T_{1}$ (s)	CO <i>T</i> ₁ (s)	
2	Р	Α	298	100.6	2.4	3.1	3.8	
2	Р	Α	253	100.6	1.9	2.2	2.4	
2	Р	Α	193	100.6	0.2	0.5	0.4	
5	S	Α	298	100.6	5.3	10.5	9.8	
5	S	Α	273	100.6	2.3	6.0	7.4	
5	S	Α	253	100.6	1.6	4.2	5.3	
5	S	Α	233	100.6	0.9	2.6	2.8	
5	S	Α	193	100.6	0.5	1.3	1.3	
5	S	Α	298	75.5	2.5	5.4	8.3	
5	S	В	298	75.5	3.4	8.1	12.0	
5	S	С	298	75.5	2.8	7.1	10.7	

^{*a*} A = (CD₃)₂CO; B = CD₃CN; C = CD₃NO₂. ^{*b*} RF = resonance frequency for ¹³C nucleus.

Table 1

No.	Solvent ^a	Carbon	δ	T ₁ (25.2 MHz)	T ₁ (100.6 MHz)
			(ppm)	(s)	(s)
$C_{5}H_{5}N$	$An(CO)_3$				
8	A	C5H5	83.80	10.8	15.6
		CO	225.84	15.6	9.6
CH_3C_5	$H_4 Mn(CO)_3$				
9	Α	CH ₃	13.62	7.5	8.4
		$C_5H_5(CH)$	82.88	7.4	7.9
		$C_{5}H_{5}(CH)$	83.29	7.6	7.9
		$C_5H_5(C)$	103.62	41.0	35.1
		co	225.97	12.3	8.3
1,3,5-((CH_3) ₃ $C_6H_3Cr(C$	<i>O</i>) ₃			
10	A	CH ₃	20.61	7.5	7.3
		C ₆ H ₃ (CH)	93.32	4.7	4.6
		$C_6H_3(C)$	112.76	28.6	100
		co	235.41	Ь	9.1
cis-1,3	$-C_4H_6Fe(CO)_3$	$cis - 1, 3 - C_4 H_6 = 1, 3 - 1, 3 $	butadiene)		
11	D	$C_4H_6(CH_2)$	40.96	4.4	4.1
		C₄H ₆ (CH)	85.86	7.7	5.6
		co	212.17	20.0	8.9

Table 3 ¹³C NMR chemical shifts and T_1 values for neutral π -ligand metal carbonyl complexes 8–11 at 298 K

^a A = $(CD_3)_2CO$, D = CD_2Cl_2 .^b Not observed.

the dominance of steric interactions (covalent radii for E decrease in the same order [6]) rather than bonding contributions between the iron center and the donor element E as discussed in detail elsewhere [7]. As observed in related investigations [8], and shown here for complexes 2 and 5, the T_1 values are very sensitive to changes in the solvent, temperature, or magnetic field strength (Table 2) [9,10]: At lower temperatures, the T_1 values for all functional groups (ECH₃, C₅H₅ and CO) fall drastically, while the effects of solvent and magnetic field strength depend strongly on the nature of the compound under investigation (see also Tables 3 and 4).

Organic-group-bearing cyclopentadienyl or aryl moieties coordinated to metals (Tables 3 and 4) show a large splitting of their T_1 values upon substitution of H by CH₃. The now quaternary carbon atoms in these ligands show long relaxation times, while the remaining unsubstituted carbon atoms relax faster or with nearly identical T_1 values when compared with the unsubstituted ligand system. Measurements at higher magnetic field in general lead to lowering of all relaxation times, but in certain cases (e.g. complexes 10 and 18), higher T_1 values were observed. The data and their general features are consistent with those observed at lower field strength by Roberts et al. [5] for ferrocenes and $[C_5H_5Fe(arene)]^+$ complexes.

The presented information on ¹³C NMR T_1 values for various organometallic compounds should be useful in deciding the choice of instrument and experimental conditions for ¹³C NMR measurements, including T_1 determinations for organometallic systems.

Table 4					
¹³ C NMR chem	ical shifts and $T_{\rm p}$	values for	$bis(\pi$ -ligand)	metal complexes	12-19

No.	Solvent ^a	Carbon	δ (ppm)	T_1 (25.18 MHz) (s)	<i>T</i> ₁ (100.6 MHz) (s)
$\overline{(C_5H_5)}$) ₂ Fe				
12	Α	C ₅ H ₅	67.94	15.2	11.0
$(C_{5}(C$	$H_3)_5)_5Fe$				
13	Ē	$C_5(CH_3)_5(CH_3)$	9.70	6.3	6.5
		$C_5(CH_3)_5(C)$	78.44	5.0	9.0
C.H.I	Fe(C, H-)				
14	D	C,H,	72.88	14.3	6.9
14		$C_{4}H_{7}(CH_{2})$	25.78	5.7	3.5
		$C_6H_7(CH)$	22.16	13.6	4.9
		$C_6H_7(CH)$	79.69	12.4	6.7
		$C_6H_7(CH)$	79.89	14.3	8.0
[(С.н	a) ColPF				
15	A	C ₅ H ₅	85.67	11.1	8.3
ІС.н.	Fe(C, H,)]PF				
16	B	C.H.	77.13	11.9	3.8
		C ₆ H ₆	88.80	10.6	3.8
/С.Н.	Fe(C ₄ H ₄ CH ₃)]	PF₄			
17	B	C.H.	77.47	11.1	ь
		C ₂ H ₂ (CH ₂)	20.69	8.5	b
		$C_7H_8(p-C)$	87.02	7.9	b
		$C_7H_8(m-C)$	88.21	7.7	Ь
		$C_7H_8(o-C)$	89.22	7.8	Ь
		$C_7 H_8 (C-1)$	104.51	35.4	b
[C,H]	Fe(p-(CH ₃) ₂ C	H_)]PF_			
18	B	C ₅ H ₅	77.79	4.8	7.8
		$C_8H_{10}(CH_3)$	20.17	2.7	6.2
		$C_{8}H_{10}(CH)$	88.55	2.5	4.4
		$C_8 H_{10}(C)$	102.61	4.8	11.8
(C,H,	$Fe(C_6(CH_3)_{\kappa})]$	PF₄			
19 ^{´´´}	B	Č,H,	78.95	0.8	b
		$\tilde{C_{12}H_{18}}(CH_3)$	17.79	0.7	b
		$C_{12}H_{18}(C)$	99.01	0.7	ь

^a A = $(CD_3)_2CO$; B = CD_3CN ; E = C_6D_6 .^b Not measured.

Experimental

Compounds 1-4 [11], 5-7 [12], 14 [13] and 16-19 [14] were prepared by published methods. The remaining complexes were commercially available.

The ¹³C NMR spectra were recorded at 25.18 MHz (Bruker AM 100), 75.5 MHz (Varian XL-300) and 100.6 MHz (Bruker AM 400) by the implemented inversion recovery method [10,15] in 5 mm NMR tubes at 298 K using ¹H/¹³C probe heads. All samples were prepared immediately prior to the measurements under nitrogen as ca. 5% solution in the stated solvents and were degassed by repeated freeze/ thaw cycles. Control measurements (ferrocene in benzene- d_6 and [C₅H₅Fe(CO)₂-

 $(S(CH_3)_2)]BF_4$ in acetone- d_6) indicated a maximum error in T_1 values of $\pm 5\%$. Measurements on undegassed samples gave much lower T_1 values.

Acknowledgements. The author thanks the Studienstiftung des Deutschen Volkes (Bonn, FRG) for financial support during his stay at the University of Utah (1987–88) and Professors R.W. Parry and T.G. Richmond for their kind support and interest.

References

- R.F. Jordan and J.R. Norton, J. Am. Chem. Soc., 101 (1979) 4853; G.E. Hawkes, E.W. Randall, S. Aime, D. Osella and J.E. Elliot, J. Chem. Soc., Dalton Trans., (1984) 279; S. Aime, M. Botta, R. Gobetto and D. Osella, J. Chem. Soc., Dalton Trans., (1988) 791.
- 2 R.T.C. Brownlee, B.P. Shehan and A.G. Wedd, Inorg. Chem., 26 (1987) 2022.
- 3 S. Aime and E. Occhiello, J. Chem. Soc., Dalton Trans., (1986) 1863; X.-L. Luo and R.H. Crabtree, J. Chem. Soc., Chem. Commun., (1990) 189; A. Gryff-Keller, H. Krawczyk and P. Szczecinski, J. Organomet. Chem., 402 (1991) 77; P. Yuan, M.G. Richmond and M. Schwartz, Inorg. Chem., 30 (1991) 588.
- 4 R.M.G. Roberts and J.F. Warmsley, J. Organomet. Chem., 405 (1991) 347 and 357.
- 5 A.P.M. Kentgens, H. Karrenbeld, E. de Boer and H. Schumann, J. Organomet. Chem., JOM 22281.
- 6 N.N. Greenwood and A. Earnshaw, Chemistry of the Elements, Pergamon Press, Oxford, 1986.
- 7 H. Schumann, A.M. Arif, A.L. Rheingold, C. Janiak, R. Hoffmann and N. Kuhn, Inorg. Chem., 30 (1991) 1618.
- 8 H.W. Spiess and H. Mahnke, Ber. Bunsenges. Phys. Chem., 76 (1972) 990; S.P. Wang, P. Yuan and M. Schwartz, Inorg. Chem., 29 (1990) 484.
- 9 I. Ando and C.A. Webb, Theory of NMR Parameters, Academic Press, London, 1983.
- 10 E. Fukushima and S.B.W. Roeder, Experimental Pulse NMR, Addison-Wesley, London, 1981.
- 11 H. Schumann, Chem.-Ztg., 110 (1986) 121; H. Schumann and L. Eguren, J. Organomet. Chem., 403 (1991) 183.
- 12 H. Schumann, J. Organomet. Chem., 304 (1986) 341.
- 13 N. Kuhn, H. Schumann, M. Winter and E. Zauder, Chem. Ber., 121 (1988) 111.
- 14 H. Schumann, Chem.-Ztg., 108 (1984) 345.
- 15 D. Shaw, Fourier Transform NMR Spectroscopy, 2nd ed., Elsevier, Amsterdam, 1984.